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Electron pairing and chemical bonds. Molecular structure
from the analysis of pair densities and related quantities

Robert Ponec
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The Fermi holes are presented as a new means of analysis and visualisation of molecular
structure. Based on these quantities it is possible to get clear and highly visual insight into
the structure of molecular fragments (functional groups) even in molecules with complex
bonding patterns like multicenter bonding, hypervalence, etc. In addition to allowing the
detection and localization of multicenter bonding, the new approach also brings some new
interesting possibilities for the quantitative evaluation of molecular similarity.

1. Introduction

The Lewis idea of electron pairing invented some eighty years ago represents one
of the pivotal achievements in an effort to understand and to interpret the molecular
structure and the proposal that chemical bonds are formed by shared electron pairs has
become one of the cornerstones of the whole modern chemistry [18,27]. Despite being
invented before the advent of quantum theory, this idea has correctly recognized the
electronic nature of chemical bonding and the mutual relation of a Lewis and quantum
mechanical picture of bonding represents a continuing challenge for the theory of
the chemical bond. In spite of unceasing theoretical efforts at the reconciliation of
both pictures of bonding [2,9–11,14–17,38], the role of electron pairs in chemical
bonds is still not satisfactorily explained. The concept of chemical bond thus still
eludes all attempts at simple and universally valid explanation. Our aim in this study
is to contribute to the solution of this old but still active problem of the chemical
theory. The basic quantity describing the behaviour of electron pairs in molecular
systems is the so-called pair density [20,23] and in past years several studies has been
published dealing with the analysis of this density in relation to chemical bonding
[26,33,35,39,42,44]. Among these attempts it is possible to include also our recent
studies based on the formalism of the so-called pair population analysis [3,8,28,29,34].
While the interpretative potential of this analysis was quite thoroughly explored in
recent years, there also appeared some new possibilities based on the exploitation of
some other quantities related to pair density. The most promising in this respect seems
to be the use of conditional probabilities describing the distribution of one electron of
the pair provided the position of the second, reference electron, is fixed in some point or
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region. Using this approach it was possible, e.g., to monitor the detailed process of the
scission of the bond during the dissociation [30]. Another quantity whose investigation
seems to be able to throw some new light on the problem of the role of electron pairing
in chemical bonds is the so-called Fermi hole. This quantity was first introduced by
Wigner in the field of solid state physics [45] but during past years several authors
have also discussed and analysed its possible relevance for chemistry [4,21,22]. In
the framework of these studies can be included also our recent study [32] in which
the Fermi holes were presented as a source of interesting and useful information about
the structure of molecular fragments (functional groups), their valences and structural
similarities. Our aim in this study is to pursue the general methodology presented in
the previous study [32] and to demonstrate that Fermi holes represent a rich source
of structural information whose analysis can contribute to the visualisation and the
understanding of the molecular structure. For this purpose the formalism was applied
to the investigation of bonding in several molecules which range from simple species
well described by the classical Lewis model of two-center two-electron (2c-2e) bond
to transition states and electron deficient systems with multicenter bonding and we
would like to show that the methodology of this new analysis is universal enough to
visualize even the structure

2. Theoretical

The basic quantity from which the Fermi holes hr2(r1) are derived is the con-
ditional probability of finding one electron of the pair provided the position of the
second, reference electron, is fixed in a point r2. This conditional probability is given
by

Pr2(r1) =
2ρ(r1, r2)
ρ(r2)

, (1)

in which the pair density ρ(r1, r2) describes the joint probability of finding the first
electron of the pair in a point r1 and the second in the point r2, and the probability
of finding one single electron in a fixed point r2 is given by the values of first-order
density matrix ρ(r) at r2.

ρ(r1, r2) =
N (N − 1)

2

∫
Ψ2(1, 2, . . . ,N ) dσ1 dσ2 dx3 . . . dxN , (2)

ρ(r) = N

∫
Ψ2(1, 2, . . . ,N ) dσ1 dx2 d3 . . . dxN . (3)

In these equations dσ and dx denote the integration over spin and spin/space coor-
dinates, respectively. Based on these quantities, the Fermi hole associated with an
electron fixed at r2 is defined as

hr2(r1) = ρ(r1)− Pr2 (r1). (4)
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The advantage of these holes is that by subtracting (1) from the ordinary density, the
conditional probability is rectified from the contribution of single electron distribution
so that they reflect the “net” effect of electron pairing. The properties of Fermi holes
in molecular systems were studied by several groups [4,21,22] and this analysis clearly
revealed that the second electron is usually predominantly distributed in the vicinity of
the fixed electron. This predominance which clearly stresses the importance of electron
pairing in chemical bonding can easily be demonstrated graphically since the holes,
as the functions of 3 variables, can straightforwardly be displayed. Such a display,
corresponding to Fermi hole associated for H2O molecule with the reference electron
fixed in the middle of one of the OH bonds, is given in the figure 1. As it is possible
to see, the second electron is indeed strongly concentrated around the fixed electron
which clearly shows the tendency of electrons in the OH bond to be paired.

In a similar way, it would be possible to analyze also any other molecule and in
this way the role of electron pairing could in principle be evaluated. Such a point by
point visualization of Fermi holes is not, however, a very efficient method for their
analysis. This is due to the fact that the actual form of Fermi holes depends on the
precise location of the reference electron and its fixation in different points generally
yields different Fermi holes. This type of dependence was studied some time ago
[21,22] by Luken who found that the hole usually moves with the reference electron and
in order to characterize this movement the concept of Fermi hole mobility function was

Figure 1. Calculated Fermi hole for H2O molecule in the plane containing nuclei. The positions of atoms
are denoted by crosses, the asterisk denotes the position of the reference electron.
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introduced. In addition to sensitivity to the precise location of the reference electron,
the above introduced analysis of Fermi holes suffers yet one important conceptual
drawback. This drawback is that fixation of the reference electron in a single point
is not very compatible with the quantum mechanical uncertainty principle. It is much
more convenient and also more realistic is therefore to introduce the so-called integrated
Fermi hole hΩ(r1) in which the reference electron is not fixed in a point but is allowed
to move within a certain region Ω. The definition of this integrated hole is then given
by

hΩ(r1) = ρ(r1)− PΩ(r1), (5)

where the integrated conditional probability PΩ(r1) is given by

PΩ(r1) =
2
∫

Ω ρ(r1, r2) dr2∫
Ω ρ(r2) dr2

. (6)

The conditional probabilities satisfy the normalization∫
PΩ(r1) dr1 = N − 1, (7)

which holds for an arbitrary form of the region Ω. As a consequence of this universal
normalization, the integrated Fermi holes satisfy∫

hΩ(r1) dr1 = 1, (8)

which again holds for the arbitrary form of the region Ω.
Although, as said above, normalizations (7) and (8) do not depend on how the

form of Ω is actually chosen, there is a certain definition which is of special importance
for chemistry. This definition is based on the virial partitioning of the charge density
ρ(r) proposed by Bader [1]. According to this partitioning the molecular space is di-
vided into regions associated with individual atoms. Adopting this type of partitioning,
the regions Ω are to be identified with the individual atomic regions of the Bader’s
partitioning. The first benefit resulting from associating the Fermi holes with the re-
gions of individual atoms consists in allowing the simple definition of the valence state
of the atom in a molecule. In addition to the analysis of Fermi holes associated with
a single atom, it is also possible to analyze the holes associated with more complex
forms of the region Ω. Such regions can naturally be formed by a union of individual
atomic regions and one of our aims in this study is to show that especially the holes
associated with the regions involving the classically bonded atoms (chemical bonds,
molecular fragments, functional groups, etc.) represent a new extremely rich source
of structural information. As it will be shown bellow, the picture resulting from such
an analysis remarkably well corresponds with the classical expectation not only for
molecules well described by localized 2c-2e bonds but also those, described by more
complex bonding patterns like multicenter bonding, hypervalence, etc., can also cor-
rectly be detected by this approach. This opens the possibility of broader systematic
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exploitation of Fermi holes and in the following part several examples of such analysis
will be reported.

This analysis requires, however, to introduce yet some other auxiliary quantities
and concepts. One of them is the concept of the so-called “charge-weighted” Fermi
hole. This quantity is related to the “normal” Fermi hole by a simple proportionality

gΩ(r1) = NΩhΩ(r1), (9)

where the proportionality factor represents the number of electrons in a region Ω:

NΩ =

∫
Ω
ρ(r1) dr1. (10)

The philosophy underlying the introduction of this concept is the following. The “nor-
mal” integrated Fermi holes are derived from the conditional probabilities describing
the distribution of one electron of the pair provided the second, reference electron, is
localized in a region Ω. Localization of one and only one electron in a region Ω is,
however, a rather artificial act which does not reflect the fact that in a real molecule
the region Ω is generally populated not by one but by NΩ electrons. The proportion-
ality factor in (9) is thus nothing but a statistical correction for the actual number of
electrons in a region Ω.

As a consequence, the “charge-weighted” Fermi holes satisfy the normalization∫
gΩ(r1) dr1 = NΩ. (11)

The analysis of these quantities is based on the fact that like the ordinary density ρ(r),
these holes also are the functions of 3 variables only so that all methods used for the
analysis of the first-order density can straightforwardly be used. Thus, e.g., if the hole
gΩ(r) is decomposed in the form of an ordinary expansion

gΩ(r) =
∑
µν

GΩ
µνχµ(r)χν(r), (12)

the matrix GΩ, which represents the hole in AO basis, can be diagonalized as ordinary
charge density-bond order matrix and important information about how the electrons
are actually distributed in a region Ω can be obtained from the inspection of result-
ing eigenvectors (“natural orbitals”) and their corresponding eigenvalues (occupation
numbers). Another possibility to extract the desired structural information from the
matrices GΩ consists in the straightforward application of the idea of standard Mul-
liken population analysis [25] to the dissection of the quantity NΩ into contributions
which can be associated with the bonds and free electron pairs of the corresponding
structural fragment. In the following section the practical application of the above
approach will be reported.

In order to demonstrate the broad universality of this approach, the systems we are
going to analyze range from simple molecules and functional groups with classical well
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localized 2c-2e bonds to nontrivial examples of molecules and fragments containing
nonclassical multicenter bonds.

3. Results and discussion

Although the above described methodology is formulated quite generally and can
be applied at arbitrary level of theory, the practical applications reported in this study
are based on some simplifying assumptions. The most important of them concerns
the pair densities which were derived, similarly as in the previous introductory study
[32], from semiempirical SCF wave functions. Another simplification concerns the
integration over Bader’s regions. Because the programs for the integration over these
regions were not available to us we used an alternative approach in which the integra-
tion over the region is replaced by appropriately restricting the summations over the
basis functions. Within this approach, the electron is assumed to be in a region of an
atom A if it resides in an orbital centred on this atom. Using this approach, combined
with the usual ZDO approximation used in semiempirical methods, the general formula
for the conditional probability over the region Ω can be written as

PΩ(r1) =
2
∫

Ω ρ(r1, r2) dr2

NΩ
, (13)

where NΩ denotes the total electron density in a region Ω. The calculations were
performed by a standard AM1 method [12] included in the MOPAC package [41] and
all molecules were considered in completely optimized molecular geometries.

Having specified the technical details of the calculations let us discuss, in the
following part, the results of the practical application of the above analysis. As a first
example let us choose the CH4 and H2O molecules as a representatives of the systems
well described by the classical Lewis model of 2c-2e bonds and let us analyze the
Fermi holes associated with the regions Ω corresponding to CH3–, CH2=, CH≡, C
and OH– and O= fragments, respectively.

The first quantity characterizing the Fermi hole associated with some functional
group is the total number of electrons NΩ contained within the corresponding region.
Such a global characterization is, however, rather trivial and gives only the crudest
picture of bonding within the group. In order to get a more detailed insight into
this structure, more sophisticated techniques of the analysis are necessary. One such
technique is based on the diagonalization of the matrix GΩ representing the Fermi hole
associated with the fragment Ω. The main goal of this diagonalization is that it allows
us to get the information about how electrons are internally distributed within a group.
The information of this kind comes from the inspection of individual eigenvalues
and eigenvectors resulting from the diagonalization of the Fermi hole. Generally,
it holds that the diagonalization yields several non-zero eigenvalues and just from
these non-zero eigenvalues (and the corresponding eigenvectors) the desired structural
information can be extracted. Thus, e.g., if it happens that some of the eigenvalues
are close to 2, then it is possible to expect that some of the total number of NΩ
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electrons contained within the group are coupled to pairs. The typical situation when
this happens is where this happens is when there are some chemical bonds or free
pairs within the group or fragment. Another frequently encountered situation is when
some eigenvalues are close to 1. Such a situation is typical for systems where the
formation of the fragment required to split some chemical bonds and such eigenvalues
correspond then to what is classically known as the “free valence” of the group.

Let us attempt now to apply the above qualitative considerations to the above
specified molecules and fragments. Thus, e.g., in all above cases it holds that irre-
spective of the actual form of the fragment, the diagonalization yields four non-zero
eigenvalues ηi which satisfy the relation

non-zero∑
i

ηi = NΩ. (14)

Much more interesting than the global quantity NΩ are, however, the individual eigen-
values ηi since they inform us about how the electrons are distributed within the group,
or, in other words, about the structure of the group. Thus, e.g., for CH3– and OH–
fragments, there are four non-zero eigenvalues of which three are very close to 2 and
the remaining one is close to unity. This suggests that six of the total number of NΩ
electrons in these fragments are actually coupled in pairs and the remaining roughly
one electron corresponds to single unsaturated free valence classically expected for
these groups. Such an interpretation is quite straightforwardly supported by the in-
spection of the form of corresponding eigenvectors where it is possible to show that
eigenvectors associated with paired electrons do indeed correspond to three CH bonds
in a CH3– group and/or one OH bond and two electron pairs of the OH group, re-
spectively. The graphical display of one such CH bonds is shown in figure 2 and the
eigenvector corresponding to the free valence of CH3– group is in figure 3. In a similar
way, it would be possible to analyze and to interpret the occupation numbers of the
orbitals resulting from the diagonalization of the Fermi holes in any other case and it
is possible to see from table 1 such an interpretation is in all cases consistent with the
classical picture of functional group as consisting of bonds, free electron pairs and “free
valences”. In connection with such a simple picture it is necessary to say, however,
that the eigenvectors (and eigenvalues) primarily resulting from the diagonalization of
the matrices GΩ do not reflect the equivalency of corresponding symmetry equivalent
bonds, free pairs and free valences but rather they transform according to irreducible
representations of the local symmetry of the fragment in a molecule. Thus, e.g., in
the case of an isolated C atom in a CH4 molecule, the degeneracy of the non-zero
eigenvalues (η1 = η2 = η3 = 0.903, η4 = 1.222) suggests that the corresponding
eigenvectors transform according to T2 and A1 irreducible representations of the Td
group. This, however, is not consistent with the classical picture of four equivalent
tetrahedrally arranged free valences. We are thus in a similar situation invoked in
the concept of hybridization as a linear combination of atomic orbitals. Here, how-
ever, we do not combine the atomic orbitals but the eigenvectors resulting from the
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Figure 2. Fermi hole associated with the CH3– group in methane, eigenvector corresponding to one of
CH bonds.

Figure 3. Fermi hole associated with CH3– group in methane, eigenvector corresponding to unsaturated
free valence.



R. Ponec / Electron pairing and chemical bonds 93

Table 1
Calculated non-zero occupation numbers of the eigenvectors resulting
from the diagonalization of Fermi holes for several simple molecular

fragments.

Group η1 η2 η3 η4

C 0.982 0.982 0.982 0.982
CH 2.000 0.982 0.982 0.982
CH2 2.000 2.000 0.982 0.982
CH3 2.000 2.000 2.000 0.982

O 2.000 2.000 1.163 1.163
OH 2.000 2.000 2.000 1.163

diagonalization of the Fermi hole. The natural criterion which such a transformation
should satisfy is to leave the Fermi hole unchanged. This, however, is just the cri-
terion introduced some time ago by Cioslowski [5] for the construction of localized
natural orbitals. The method is known as the so-called isopycnic transformation and
its application in our case does indeed lead to the formation of four equivalent eigen-
vectors directed, as expected to the corners of the tetrahedron and this equivalency
finds its reflection also in the four-fold degeneracy of the corresponding eigenvalues
(η1 = η2 = η3 = η4 = 0.982).

In a similar way it would be possible to analyze the structure of any other
fragment and in all cases of molecules well described by classical Lewis model of 2c-
2e bonds the resulting picture of bonding can straightforwardly be confronted with the
classical expectation. Thus, e.g., in the case of C=C fragment in the ethene molecule,
the diagonalization of the corresponding Fermi hole yields six non-zero eigenvalues
of which two, corresponding to σ and π components of the C=C double bond are
close to 2 (η1 = 2.000, η2 = 1.996) and the remaining four (after being subjected to
an isopycnic transformation) are, consistent with the existence of four equivalent free
valences corresponding to broken CH bonds, equal to 1.110. Similarly, if the region
Ω is identified with one of the hydrogens, the diagonalization of GH yields only one
non-zero eigenvalue corresponding to the free valence of an isolated H atom from the
broken CH bond.

After having demonstrated the applicability of the approach in the case of mole-
cules well represented by the classical Lewis model let us report now the results of
the application to more difficult cases. As an example of such systems let us choose
first the electron deficient molecules with 3-center bonding and let us demonstrate that
even such nontrivial feature as three-center bonding can straightforwardly be detected.
As it is possible to expect, however, the picture of bonding resulting from the diag-
onalization of the Fermi holes will be a bit more complex in this case. The typical
example of a molecule with 3-center bond is the diborane B2H6 and this is why the
results for this molecule will be presented first. For this purpose let us start with the
analysis of the Fermi hole associated with the region Ω involving one boron atom.
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In this case the diagonalization of the matrix GB, followed by the subsequent
isopycnic transformation gives four non-zero eigenvalues of which two are close to
unity (η1 = η2 = 0.990) and the remaining two are close to 0.5 (η3 = η4 = 0.470).
The situation for the former eigenvalues is quite simple since as it is possible to expect
they correspond to two free valences of broken BH bonds (figure 4). The existence
of the eigenvalues close to 0.5 is, however, a completely new phenomenon and it was
therefore of special interest to look at the type of bonding to which they correspond.
One of the corresponding eigenvectors is shown in figure 5. As it is possible to see,
the eigenvector is predominantly localized in the region involving both borons and the
bridging hydrogen so that it clearly resembles the three-center bond whose presence
is expected in the same region. The fact that the eigenvalue associated with this
eigenvector is close to 0.5 can thus be interpreted in a sense that each boron atom

Figure 4. Fermi hole associated with one boron atom in B2H6, eigenvector corresponding to terminal
BH bond.

Figure 5. Fermi hole associated with one boron atom in B2H6, eigenvector corresponding to three-center
BHB bond.
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Table 2
Calculated eigenvalues of the Fermi hole associated with

the region involving both boron atoms in diborane.

Eigenvalue Value Localization

η1 0.967 BHB
η2 0.967 BHB

η3 0.977 BH
η4 0.977 BH
η5 0.977 BH
η6 0.977 BH

contributes roughly 0.5 electron to each of the three-center bonds. We can thus see
that the analysis of the Fermi hole even for a rather arbitrarily chosen region Ω clearly
reveals the existence of 3-center bonding in this molecule. The necessary condition for
detecting the presence of such multicenter bonds is that the region Ω contains at least
one atom involved in three-center bonding. If we accept this interpretation then it is
possible to expect that for the region involving both boron atoms, the final picture of
bonding should roughly correspond to the superposition of the pictures for individual
borons. One can thus expect four eigenvalues close to unity (corresponding to four
broken terminal BH bonds) and, since each boron atom contributes roughly 0.5 to each
three-center BHB bond, the two eigenvalues associated with three-center BHB bonds
should now be twice as large, i.e., they can be expected to be close to unity. The
calculated eigenvalues resulting from the diagonalization of the corresponding Fermi
hole are summarized in table 2 and as it is possible to see they closely parallel the
above intuitive expectations.

The operation of such a superposition principle can quite convincingly be demon-
strated by another example of the Fermi hole involving only bridging hydrogens. The
diagonalization of the GHH matrix yields in this case there are two non-zero eigenval-
ues close to unity, and the corresponding eigenvectors resemble again the three-center
BHB bond (remember that bridging hygrogens are involved in three-center bonds).
If we now realize, that similar eigenvectors with occupation numbers close to unity
were detected also in the previous case of the Fermi hole associated with the region
involving both boron atoms, then it is possible to expect that two eigenvalues close
to 2 can be expected for the Fermi hole associated with the region involving both
boron atoms and both bridging hydrogens. The actual calculations performed for this
particular choice of the region Ω quite nicely correspond to the above simple expec-
tations. The diagonalization of GBHBH yields in this case six non-zero eigenvalues
of which four, which are close to unity, correspond to four free valences of broken
terminal BH bonds and the remaining two, which are close to 2 do indeed correspond
to two-electron pairs of two three-center two-electron BHB bonds.

The limiting case of such an analysis corresponds to the situation when the
region Ω involves all atoms. In this case the Fermi hole degenerates to the normal first-
order density matrix so that its diagonalization leads to six doubly occupied molecular
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orbitals. The effect of the isopycnic transformation is then to convert the canonical
molecular orbitals to localized ones which, in the case of diborane, correspond to
4 terminal BH bonds and 2 BHB three-center bonds. The effect of the isopycnic
transformation is thus in this case equivalent to usual orbital localization which is
frequently used for the detection of three-center bonding in molecules [19]. The above
approach thus provides a new theoretical rationale for the intuitive use of localization
techniques sometimes employed for the detection of multicenter bonding. In view of
the above analysis these localization techniques are nothing but the special case of the
above presented general analysis of Fermi holes.

As a next example demonstrating the wide applicability of the presented approach
for the analysis of three-center bonding let us discuss the case of the B4H10 molecule.
According to the Lipscomb rules [43] the molecule is expected to contain four BHB
three-center bonds, one single BB bond and two BH2 groups (figure 6). In order to
test this theoretical prediction the molecule was recently subjected to the formalism
of the so-called nonlinear pair population analysis [3,33]. Using this approach it was
indeed possible to detect the presence of four three-center BHB bonds as well as
one single BB bond and six terminal BH bonds consistent with the Lipscomb rules.
At the same time, however, two non-negligible contributions corresponding to BBB
three-center bonds were detected. In the original study [36] these contributions were

Figure 6. Structure of B4H10.
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interpreted as fractional BBB bonds but after discussion with professor Lipscomb these
contributions were reinterpreted as corresponding to partial delocalization from BB
bond towards BH2 terminal groups [3]. The fact that this interpretation is indeed to be
preferred can straightforwardly be demonstrated using the above introduced analysis.
For this purpose let us compose a region consisting of all four boron atoms and let
us diagonalize the Fermi hole associated with this region. The diagonalization of this
hole yields eleven non-zero eigenvalues of which one is close to 2 and the remaining
ones close to unity. In light of what has been said above, this result can be regarded
as an indication that there is one and just one electron pair in the BBBB fragment
and the inspection of the form of the corresponding eigenvector clearly shows that
it is strongly localized in the region of single BB bond (figure 7). The remaining
10 non-zero eigenvalues correspond to 10 unsaturated free valences. Six of them
coincide with 6 broken BH terminal bonds and the remaining 4 with 4 three-center
BHB bonds (remember that hydrogens were excluded from the region so that no
complete pairs could be formed in BHB regions). We can thus see that the analysis of
the Fermi hole conveniently complements the results of nonlinear population analysis
[3] and unequivocally thus helps in the interpretation of the small BBB three-center
pair populations.

As a next example demonstrating the universality and the usefulness of the above
presented analysis of the Fermi holes let us discuss the molecule of pentaborane B5H9

(figure 8). For this molecule the Lipscomb rules predict the existence of four BHB,
one BBB and 2 BB bonds and the structure thus could be schematically depicted by

Figure 7. Fermi hole associated with BBBB fragment in B4H10, eigenvector corresponding to 2c-2e BB
bond.
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Figure 8. Structure of B5H9.

figure 9. The correctness of the schematic structure can straightforwardly be confirmed
also by the results of the analysis of the Fermi hole. For this purpose let us analyze
the Fermi hole associated with the fragment consisting of all five boron atoms. The
selected results of the diagonalization of the matrix GΩ are collected in table 3. There
are in this case 12 non-zero eigenvalues of which 3 (included in the table) are close
to two and the remaining 9 close to unity. The detailed inspection of the form of
corresponding eigenvectors suggests that of the nine eigenvectors occupied by roughly
one electron, five correspond to the free valences of five broken terminal BH bonds
and the remaining four to four non-completely filled three-center BHB bonds. Much
more interesting than these free valences are, however, the eigenvectors corresponding
to electron pairs. This information can again be obtained from the inspection of the
form of corresponding eigenvectors, and such an analysis shows that they quite closely
correspond to two 2c-2e B1B5 and B1B2 bonds and to one 3c-2e B1B3B4 bond. This
result is very interesting since it completely corresponds to the expectations of the
Lipscomb rules (styx = 4120) and to the schematic formula (figure 9). We can
thus see that the above formalism does indeed reflect the basic structural features of
this molecule correctly even if the standard localization techniques usually used for
the visualization of bonding fail in this case [19]. Here it is, however, necessary to
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Figure 9. Schematic visualization of the bonding in B5H9.

Table 3
Calculated eigenvalues of the Fermi hole associated
with the electron pairs contained in the region involv-

ing all five boron atoms in B5H9.

Eigenvalue Value Localization

η1 1.973 B1B5

η2 1.973 B1B2

η3 1.971 B1B3B4

be aware of the fact that even if the pair localization could be obtained within our
analysis, the resulting set of bonds corresponds to one limiting structure and in order to
satisfy the requirements of symmetry of the molecule, the resonance of several limiting
structures has to be invoked.

After having discussed several examples of molecules with three-center bonding,
let us demonstrate, as a next example, the applicability of the approach to the visual-
ization of bonding in some other systems with unclear bonding patterns. Such systems
can be represented, e.g., by the transition states of chemical reactions and in the fol-
lowing part one example of such an application will be reported. The system analyzed
is the thermally allowed conrotatory cyclisation of 1,3-butadiene to cyclobutene. In
keeping with the allowed nature of the process the reaction can formally be regarded
as a cyclic shift of bonds [31]. Such a classical picture of electron reorganization is,
however, rather crude and gives us no idea of how the structure of the corresponding
transition state should look. For that reason and in view of the success of the above
approach in visualizing the bonding in other complex systems we decided to apply the
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analysis of the Fermi holes also in this case. The first problem which we encounter
here is how to choose the form of the region Ω properly. A certain guide which can
help us with the choice of this region is that only CC bonds are actively involved in
the process so that it seems natural to choose the region Ω as a union of the regions
of individual C atoms. Having specified the form of the region the whole subsequent
analysis is quite straightforward and consists first in the determination of the form of
the Fermi hole associated with the CCCC region for the transition state of the reaction.
The structure of the transition state is then deduced from the eigenvectors and eigen-
values resulting from the diagonalization of the matrix GΩ representing the Fermi hole
in AO basis. This diagonalization yields 11 non-zero eigenvalues of which 6 are very
close to unity and the remaining 5 are close to two. The inspection of the form of
corresponding eigenvectors shows that six singly occupied eigenvalues clearly corre-
spond to the free valences of the 6 broken CH bonds. Much more interesting than these
free valences are, however, the doubly occupied eigenvectors since they are just these
quantities which inform us about the distribution of electron pairs (chemical bonds) in
the CCCC fragment. The detailed analysis of these eigenvectors shows that three of
them are localized in three σ bonds belonging to butadiene σ skeleton. The graphical
display of one of such eigenvectors is shown in figure 10. If we look similarly also
at the remaining two doubly occupied eigenvectors then it is possible to show that
one of them strongly resembles the π component of cyclobutene double bond and the
remaining one is highly reminiscent of distorted σ bond of cyclobutene (figures 11
and 12). We can thus see that instead of the intuitively expected picture of fractional
CC bonds delocalized over the whole CCCC skeleton the structure of the transition
state clearly resembles the structure of the final cyclobutene. This result is very inter-
esting since the classification of transition states in terms of similarity to either reactant
or the product is well known in organic chemistry as the so-called Hammond postu-

Figure 10. Fermi hole associated with CCCC region for the transition state of butadiene to cyclobutene
rearrangement. Eigenvector corresponding to one of the CC σ bonds of butadiene skeleton.
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Figure 11. Fermi hole associated with CCCC region for the transition state of butadiene to cyclobutene
rearrangement. Eigenvector corresponding to newly formed CC π bond.

Figure 12. Fermi hole associated with CCCC region for the transition state of butadiene to cyclobutene
rearrangement. Eigenvector corresponding to newly formed CC σ bonds.

late [13,24]. This empirical postulate characterizes the transition states as reactant- or
product-like on the basis of the exothermicity of the process. Exothermic reactions
are expected to have reactant-like transition states while product-like transition states
are typical for endothermic reactions. Although widely accepted and frequently used,
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this postulate has the disadvantage of all empirical rules which is that it lacks solid
theoretical justification. The importance of the above introduced approach is in that
it opens the possibility of theoretical justification of this postulate. Such a justifica-
tion is quite straightforward since if we compare the calculated heats of formation of
butadiene and cyclobutene it is possible to see that the reaction written in the direc-
tion butadiene → cyclobutene is endothermic so that the Hammond postulate requires
the transition state to be product-like and this is indeed the case. In this connection
it is, perhaps, worth recalling that quite recently another independent attempt at the
theoretical justification of the Hammond postulate in terms of the so-called similarity
indices was reported [6,7,37,40] and the results of both these independent approaches
are completely consistent. This result is extremely important since it demonstrates that
the analysis of Fermi holes is not only able to visualize and to interpret the structure of
the species with complex bonding patterns but also it opens the new possibility of the
quantitative characterization of similarity of molecules and molecular fragments. For
both these reasons we believe that further systematic studies of Fermi holes are worth
pursuing and some such investigations, aiming, e.g., at a new look at the problem of
group valence and hypervalence are currently being performed in our laboratories and
their results will be reported elsewhere.
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